Preface: AMD’s Zynq™ UltraScale+™ RFSoCs are a family of highly integrated adaptive Systems-on-Chip (SoCs) that combine a multi-core Arm® processing system, programmable logic (FPGA fabric), and direct RF-sampling data converters (ADCs and DACs) on a single chip. CVE-2025-48507 Affected Devices: Kria™ SOM, Zynq™ UltraScale+™ MPSoCs and Zynq™ UltraScale+™ RFSoCs.
Background: The crypto operations in Arm® Trusted Firmware (TF-A) are part of a subsystem, which can be implemented through various components like the Runtime Security Engine (RSE) or a dedicated secure enclave. This subsystem provides hardware-assisted security services, such as cryptographic acceleration and secure storage, which are distinct from the main processor and are protected by the system’s security architecture.
From a cyber security perspective, calling a processor into TF-A is different because it uses a specialized, secure boot process and requires the processor to switch to a secure state via a Secure Monitor Call (SMC) instruction, as outlined in the Arm Developer and Trusted Firmware-A Documentation. This differs from standard OS calls which typically use different mechanisms for switching between user and kernel modes.
*Secure Monitor Call (SMC): TF-A calls are initiated using the SMC instruction, which is specifically designed for secure operations and causes the processor to switch to a privileged secure state (like EL3).
Vulnerability details: The security state of the calling processor into Arm® Trusted Firmware (TF-A) is not used and could potentially allow non-secure processors access to secure memories, access to crypto operations, and the ability to turn on and off subsystems within the SOC.
Official announcement: Please refer to the link for details – https://www.tenable.com/cve/CVE-2025-48507